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Geometric Classification of General Dynamical 
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A combination of the geometric spectral theory (based on a pair of an order-unit 
space and a base-norm space) with the theory of invariant cones in Lie algebras 
can replace the associative *-algebras as a complete description of dynamical 
systems. This geometric language is equally applicable to the classical and 
quantum cases. Reversing the relation between the automorphism groups of the 
two relevant structures--(lattice) order and Lie product--one may obtain a large 
class of new (quantum) dynamical systems. 

1. I N T R O D U C T I O N  

In the last few years the theory o f  invariant  cones in finite-dimensional 
real Lie algebras has been successfully developed (Paneitz, 1981, 1983; 
Hilgert and Hofmann ,  1988; Hilgert et al., 1988). By definition, such cones 
are invariant  under  the act ion of  the inner Lie au tomorphisms  and appear  
as a natural  object in the context  of  Lie algebras, where there is no purely 
algebraic concept  o f  positivity. Similar (in general, infinite-dimensional) 
invariant geometr ic  structures can be found  in the usual descript ion o f  both  
classical and quan tum dynamical  systems (mechanical ,  statistical, field 
systems, etc.). They are exemplified by the cone o f  all nonnegat ive funct ions 
on the classical phase space (with the Poisson brackets as Lie product)  and 
the cone o f  all positive self-adjoint operators  (with the opera tor  commu-  
tator), respectively. 

These natural  cones and the cor responding  order  relations are, of  
course,  very well known,  but  they (and in part icular  their invariance proper-  
ties) have never been used for the purpose  o f  defining ,and classifying 
different kinds o f  dynamical  systems. With the appearance  o f  the geometr ic  
spectral theory  (Alfsen and Shultz, 1976; Abbati  and Mani~, 1981; Riedel, 
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1983), one should expect this situation to change: the geometry of the 
positive cones (and their duals) turned out to be the relevant structure 
which completely determines the spectral (i.e., statistical) properties of the 
dynamical variables. 

2. INVARIANT GEOMETRIC DYNAMICAL SYSTEMS 

I first exploit the potentialities of the abstract geometric spectral theory 
[order-unit and base-norm spaces in spectral duality in the sense of Alfsen 
and Shultz (1976)] in order to replace the usual (associative) algebraic 
language by a more economical (and physically complete) description. What 
one has to do is to combine the geometric spectral theory with an appropriate 
Lie algebra structure. In all known cases (classical and quantum) "appropri-  
ate" means invariance of the positive cone under the inner Lie automorph- 
isms. Thus, one comes to the notion of "invariantly ordered spectral Lie 
algebras" as a geometric description (or definition) of a generic dynamical 
system. The term "spectral" refers to the properties required by the geometric 
spectral theory. The starting point is the following definition. 

Definition (D). Let (A, A +, e) and ( V, V +, K)  be an order-unit and a 
base-norm space in spectral duality relative to the bilinear form (a, p), a e A, 
p e  V. Here e e A  + is the order unit in A and K c  V + is the base of the 
positive cone V + in 1/: Let {e~,} be the spectral family of a e (A, A +, e). Let 
A be a real Lie algebra with Lie product [a, b], a, b e A, and let Inn(A, [., .]) 
denote the group of the inner automorphisms of (A, [. ,  .]) {subgroup of 
Aut(A, [., .])}. We say that the pair (A, A +, e), (V, V +, K)  is an (invariant) 
geometric dynamical system if: 

(D1) The positive cone A + and the order unit e in A are invariant 
under all inner automorphisms of (A, [., .]--gA+=A +, ge = e for all g e  
Inn(a ,  [ . , .  ]). 

(D2) The relation [a, b] = 0 implies [e~, b] = 0 for all h. 
(D3) Z[..]_c Ze, where Z[.,.] and Ze are the centers of (A, [ . , .  ]) and 

(A, A +, e), respectively. 
By definition, the (bounded) variables of the system (A, A +, e), 

(V, V +, K)  are the elements of A and the states lie in K. The probability 
that a measurement of a e A in a state p yields a value in M c R is ( p ~ ,  p), 
where P~4 = SM de~. Accordingly, the mean value of a in p is the real number 
(a, p). 

The requirements (D2) and (D3) are provisional and likely to be 
redundant. The crucial requirement is (D1) because it implies the usual 
Hamiltonian form of the equation of motion, existence of conservation 
laws, etc. Indeed, it is reasonable to assume that the time evolution is 
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described by a one-parameter (semi)group to, of transformations which are 
symmetries of the relevant structure in A [or by the dual (semi)group to', 
of  positive transformations acting on K].  In the most regular case tot will 
preserve both structures in A (order and Lie product),  i.e., tot e Inn(A, [ . ,  �9 ]) 
and tot e Aut(A, A +, e). Now, (D1) means nothing else but Inn(A, [ . , .  ] ) c  
Aut(A, A +, e) and the first condition is sufficient. As a consequence, the 
infinitesimal operator H of tot will be of the form Ha = [a, h] for some 
h e A  (the "Hamil tonian")  and the equation of  motion of a(t)=to,a 
becomes da(t)/dt=[a,h]. The second condition [to, eAut(A,A+,e)] 
guarantees that during the time evolution the spectrum of  the variables is 
preserved. If we drop the condition tot e Inn(A, [ . , .  ]), we can still speak 
of dynamics- -"non-Hamil tonian"  dynamics. 

Definition (D) can be further specified in order to single out the classical 
and quantum systems. Our experience with the associative *-algebras sug- 
gests that the vector lattice structure of (A, A § e) corresponds to the classical 
case, while the other extreme--antilatt ice structure--describes quantum 
systems. Recall that the vector lattice structure automatically induces in A 
a (unique) commutative associative multiplication with e as algebraic unit 
(Vulikh, 1961; Alfsen and Shultz, 1976). In the general (nonlattice) case no 
associative algebraic structure is implied. 

There have been interesting attempts (Davies and Lewis, 1970; 
Edwards, 1970) to define statistical dynamical systems as a dual pair of  an 
order-unit and a base-norm space with some mild additional requirements. 
It is clear, however, that such a pair cannot provide a complete description 
without a fully developed geometric spectral theory; what is more, we need 
another structure (Lie product) responsible for the usual form of dynamics. 
Definition (D) could be regarded as a strengthened version of the Davies 
and Lewis model, but it is manifestly complete and this makes it closer to 
the associative *-algebraic definitions. Unlike the latter, our definition uses 
two independent structures (order and Lie product),  an approach leading 
to a surprising symmetry between classical and quantum systems (see 
below). 

Definition (D) is discussed in more detail in Petrov (1988). Practically 
nothing is known on the major problem--classification of all dynamical 
systems in the sense of (D), for the invariantly ordered spectral Lie algebras 
are far from being classified and studied even in the finite-dimensional case. 
However, it is obvious that classical finite-dimensional geometric systems 
do not exist [the group Aut(A, A § e) is finite and no Lie algebra can satisfy 
(D1)]. This is, of  course, what one should expect. On the other hand, it is 
a plausible conjecture that the only finite-dimensional quantum systems are 
represented by the Hermitian part of the full matrix algebras ordered by 
the cone of the positive matrices. For the first finite-dimensional results 
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related to the interplay between spectral order and Lie algebra structure in 
the context of  the quantum version of (D) see Hilgert (1988). 

3. AN ALTERNATIVE A P P R O A C H  

I turn now to a quite different subject, taking full advantage of the 
two-structure character of  (D) and aiming at an alternative definition of 
quantum dynamical  systems. 

Let me first remark that no explanation is known of the important fact 
that the quantum and classical Lie algebras are not isomorphic. It is a 
matter of  observation that the Poisson brackets Lie algebra in classical 
mechanics and the commutator  Lie a lgebra  in quantum mechanics are 
qualitatively different. Here is the origin of  all difficulties in the traditional 
approach to the problem of quantization. In the abstract setting of (D) one 
can only suspect that two cones with so different a geometry cannot live as 
invariant cones in the same Lie algebra. 

A second observation concerns the groups Aut(A, A +, e) in the classical 
and quantum cases. One is not able to compare directly these automorphism 
groups and perhaps there is no simple relation between them. The reasonable 
equation to ask is what is their relation to the corresponding Lie automorph-  
ism groups. In both cases (D1) holds: Inn(A, [ . ,  �9 ])oi-c Aut(A, A +, e)ol, 
I n n ( A , [ . ,  . ] ) q u C _ A u t ( A , A + , e ) q u  . However, at least in the standard 
(mechanical) examples, Aut(A, A +, e)ol r Inn(A, [ . ,  �9 ]cl and the group 
Aut(A, A § e)d is much bigger, while in the quantum case the corresponding 
two automorphism groups seem to coincide. So the quantum antilattice 
cone is "more  smooth"  at least with respect to its own Lie algebra. 

The third and most important observation refers to the probabilistic 
aspect of  the dynamical systems. Here the classical vector lattice structure 
plays an exceptional role, for only in that case can the whole space A be 
regarded as a genuine space of random variables in the sense of probabili ty 
theory. The obvious reason is that only then is the set of  the projective units 
(the extreme points of  the order interval {a c A :  0 ~  < a ~< e}) a Boolean 
algebra (Vulikh, 1961; Alfsen and Shultz, 1976). 

The existence of quantum systems requires abandoning this global 
Boolean structure, but there can be more than one way to do so. The usual 
way amounts to replacing the classical lattice cone by a (spectral) antilattice 
one while preserving its invariance with respect to the automorphism group 
of the corresponding (necessarily modified) Lie algebra. Is it conceivable 
to proceed in exactly the opposite way- - to  break the invariance of the 
positive cone and preserve its lattice geometry (as long as possible)? That 
is the question we now treat. 

Definition (D) itself suggests what we have to do - -wha t  requirement 
should be accepted in place of  (D1). The role of  (D1) consists primarily 
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in the implication that the group of the common order and Lie automorph- 
isms must be as large as possible. Once this has been realized, we can 
replace (D1) by the opposite requirement: Aut(A, A +, e) c Inn(A, [ . , .  ]) 
(or Aut(A, A +, e) c Aut(A, [ . ,  �9 ]), if necessary, the space (A, A +, e) itself, 
exactly as in the classical case, being a vector lattice. 

Now we have to deal with a mathematical structure radically different 
from the invariantly ordered Lie algebras of (D). The point is that if 
Aut(A, A § e) _ Inn(A, [ . , .  ]) and Aut(A, A +, e) # Inn(A, [ . ,  �9 ]), we shall 
be forced to introduce a whole family (A, ~A +, e), q c G, of  (isomorphic) 
vector lattices with a common order unit, parametrized by a subgroup G 
of Inn(A, [ . , .  ]). For example, such a family emerges inevitably in the 
finite-dimensional case where the group Aut(A, A +, e) is finite (essentially 
a permutation group) and therefore no continuous subgroup of 
Inn(A, [ . ,  �9 ]) can leave A § invariant, i.e., in general q~A + ~ A § On the other 
hand, no physical model can do without a continuous subgroup of  
Inn(A, [ . ,  �9 ]) describing the transformation law of the dynamical variables. 
What is more, we must allow the cone A § to be acted upon by the 
transformations r otherwise we shall violate the physical equivalence 
between the different reference frames, whatever they might be. [In the 
framework of  the invariant systems (D) the action or nonaction of the 
transformation law on A + makes no difference, because of the strict invari- 
ance of the cone.] 

Let us remark that the family (A, ~A +, e) has a classical counterpart. 
Indeed, in the classical case again Aut(A, A § e) ~ Inn(A, [ -, �9 ]), the group 
Aut(A, A +, e) being the bigger one. Then for ~p ~Aut(A, A § e) we can 
define a new Lie product  [ . ,  �9 ]9 by [a, b]~ = q o - l [ ~ p a ,  q~b] and such a con- 
struction results in a family of  isomorphic Lie products {in general [ . ,  "]9 ~ 
[ . ,  �9 ], and equality holds only if q~ ~ Aut(A, [ . ,  �9 ])}. Reversing the relation 
between the automorphism groups, we get the family (A, ~A +, e) in place 
of [ . ,  �9 ]9. Following this symmetry, we say that instead of the invariant 
lattice cones in Lie algebras [the classical version of  (D)] we now have to 
deal with "invariant Lie products in vector lattices." Presumably either the 
lattice cone or the Lie product can be invariant, but not both; two-sided 
invariance (that is, coincidence of the automorphism groups) requires 
nonlattice (if not antilattice) geometry of the cone. 

4. A FAMILY OF LATTICE CONES VERSUS A SINGLE 
ANTILATTICE CONE 

The above considerations lead to the introduction of two disjoint classes 
of Lie algebras equipped with a lattice order (and a fixed order unit). The 
first class is characterized by the relation Inn(A, [ . ,  . ] ) t A u t ( A ,  A +, e) 
and the second by the opposite relation Aut(A, A +, e ) c  Inn(A, [ . , - ] )  
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{or AutA, A +, e) c Aut(A, [ . ,  �9 ]}; in both cases equality is excluded. The 
standard quantum systems are contained in neither of  them because the 
quantum space (A, A § e) is not a vector lattice (and in addition the two 
automorphism groups are expected to coincide). 

When our requirement is Aut(A, A +, e ) c  Aut(A, [ . , .  ]) any Abelian 
Lie algebra can be trivially turned into a "second-class" Lie algebra. A 
simple construction shows that there are examples of nontrivial ("factor- 
like," with one-dimensional center) second-class Lie algebras (or 
equivalently, second-class vector lattices). 

Example (E). Let A be the four-dimensional real space of the Her- 
mitian 2 x 2 matrices, [ . ,  �9 ] the usual matrix commutator (multiplied by i), 
and I the identity matrix, and let 0"i, i = 1, 2, 3, be the Pauli matrices. Let 
us introduce the linear bases (ai), (hi) given by 

al =1+0"1+0"2-]-0"3 
a 2 =  I - - o -  1 - -0"2+0-  3 

a 3 = I - -  0"1--I- 0-2-- 0- 3 

a4= I + 0 " 1  - - 0 " 2 - - 0 " 3  

bl = I -  0-1 - 0 - 2 -  o- 3 

b2 = I + 0-1 + 0 - 2 -  0-3 

b 3 = I + 0 - ~ - - 0 2 + 0  3 

b4 = / - 0-~ + 0-2+ 0-3 

Let A +, A~ c A denote the lattice cones generated by (ai) and (bi): A~-= {A 
conv(a~): A->0}, + {3. conv(b;): it >0}; the convex hulls conv(a~) and A 2 ~ 

conv(b~) are bases of As + . One verifies that A u t ( A , A [ , I ) =  
Aut(A, A~-, I)  c Aut(A, [ . , .  ]) and consequently (A, AT, I)  and (A, A~-, I )  
are two second-class vector lattices on the Lie algebra (A, [ . ,  �9 ]). They are 
different ( A T e  A~-), but generate the same family under the action of 
Inn(a ,  [ . , .  ]): {(a, c a  +, I):  r ~ Inn(a ,  [ . , .  ])} = {(a, cA~, I):  q~ c 
Inn(A, [ . , .  ])}. Actually, any member of this family can be taken as an 
example of a second-class vector lattice. Finally, one should point out that 
the group Aut(A, A~-, I)  = Aut(A, A~-, I)  is not contained in Inn(A, [ . ,  �9 ]). 

Our example thus shows that the requirement Aut(A,A +, e ) c  
Inn(A, [ . , . ] )  is perhaps too restrictive and in principle we have to use 
Aut(A, [ . ,  �9 ]) instead of Inn(A, [ . ,  �9 ]). This circumstance is quite analogous 
to the situation in the theory of invariant cones, where the suitable group 
in Inn(A, [ . ,  .]) and not Aut(A, [ . ,  .]) (the latter is too big and often 
precludes the existence of invariant cones). 

According to (D), the first-class Lie algebras can be identified with 
classical dynamical systems. Now, what about the second-class Lie algebras? 
The treatment of a family of vector lattices with a common order unit as a 
sort of dynamical system is not as straightforward as in the invariant case 
(D), but nevertheless it seems to be possible. The remarkable thing is that 
these hypothetical dynamical systems will behave much like the familiar 
quantum ones possessing at the same time a considerably richer physical 
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content. The latter is not surprising because of the existence of larger 
Boolean algebras in them. 

In the new situation the interpretation rules adopted in (D) have to be 
modified in a more or less obvious manner.  Fixing an element a ~ A is no 
longer sufficient to determine a unique variable; in addition to this, we have 
to indicate a particular cone q~A +, i.e., to fix the reference frame. Thus, the 
new variables are pairs (a, ~A+), a c A, q~ ~ G _c Inn(A, [ ", �9 ]), which means 
that a ~ A is regarded as an element of  (A, q~A +, e) for the chosen ~. Such 
variables are not uniquely determined by their mean values in all s ta tes-- they 
depend on the additional parameters  of  G. Within a fixed (A, ~A +, e) 
everything remains as u s u a l - - a  ~ (A, q~A +, e) is a random variables on the 
Boolean algebra of  the projective units associated with the cone ~A+and 
the corresponding events are interpreted as outcomes of a joint measurement  
of  some set of  basic variables (with respect to the chosen reference frame). 

Each vector lattice (A, q~A +, e) (~ fixed) is a commutative associative 
algebra, but the commutat ive multiplication is sensitive to any change 
("rotat ion")  of  A +, i.e., it is a multivalued operation in A. Operations with 
elements from different vector lattices (A, ~A +, e) do not make sense, which 
means in particular that the associative multiplication is either commutative 
or it simply does not ex is t - -a  feature characteristic for quantum systems. 
The multivalued commutative multiplication is defined on the whole space 
A and could reproduce the formal effects of  the standard operator noncom- 
mutativity; in this sense we can speak of  quantum behavior of  the family 
{(A, ~A +, e), ~o ~ G}. Moreover,  the standard noncommutatat ive multiplica- 
tion is physically meaningless, while the commutat ive multiplication inside 
each (A, ~oA +, e) is induced by the corresponding Boolean structure and 
can be interpreted in the usual way. 

The most striking properties o f  the family (A, q~A +, e) are revealed 
when we try to define the set of  states of  the new model. Following the 
usual prescriptions of  positivity, we conclude that the states lie in the 
intersection of the duals of  all lattice cones ~A +, q~ ~ (3. This procedure will 
cut off the extreme rays of  the duals of  ~A + (which again are lattice cones) 
and the resulting cone will possess a higher symmetry. Both effects are 
observed in the usual operator  quantum theory, where the first is known 
as "uncertainty relations." 

We are thus led to the hypothesis that a covariant family of vector 
lattices {(A, q~A +, e), q~ ~ G}, where G _c Inn(A, [ . ,  �9 ]) and (A, [ . ,  �9 ]) is a 
second-class Lie algebra, does not describe dynamical systems of  some 
unknown nature, but could possibly be used as a new description (in fact, 
definition) of  the familiar quantum systems. 

Such a hypothesis is supported by an earlier attempt to describe the 
simplest quantum system (spin 1/2) through a family of  eight-dimensional 
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vector lattices with a common order unit (Petrov, 1985). This first realistic 
example of a covariant quantum model is constructed without any reference 
to Lie algebra structures, but it implicitly makes use of lattice cones very 
similar to those from the above four-dimensional example (E). Even the 
oversimplified structure of  (E) can be given a consistent physical meaning 
if we regard the triple o-i ~ (A, A~, I) ,  i = 1, 2, 3, s = 1 or 2, as basic variables 
and the group G = Inn(A, [ . ,  �9 ]) as the corresponding transformation law. 
The triple of  pairs (~cri, ~A~) behaves like a vector, each component of 
which has two possible values +1 in every reference frame. The elements 
(~oai) [resp. (~b~)] are the four atoms of  the Boolean algebra associated 
with (A, q~Af, I)  [resp. (A, ~A~', I ) ]  interpreted as outcomes of a joint 
measurement of any two independent components among (~o-i, ~A~ +) [only 
two components are independent; for example, in (A, A~ +, I)  we have 
cr~crj =+ok ,  where the multiplication is the commutative multiplication 
induced by the lattice cone A~+]. In order to have three independent com- 
ponents, we obviously need 2 3 =  8 atoms and therefore a family of eight- 
dimensional vector lattices such as in Petrov (1985). 

If we generally assume that (nontrivial) second-class Lie algebras are 
to be identified with quantum systems, we have to ask whether such a 
definition is consistent with the usual operator quantum formalism. We 
have to look for a factorization procedure by which the operator language 
[or rather its geometric version (D)] could be deduced from the covariant 
definition. Given the family {(A, ~A +, e), ~ ~ G}, we have already observed 
that the set of states generates a nonlattice cone ( " ~  (~A+) ' with a higher 
symmetry. On the other hand, we have to deal with classes {(a, q~A+): r ~ (3, 
~a = a} of equivalent (basic) variables and can formulate the following 
problem: find a simplified description in which the inner structure of these 
equivalence classes is ignored while the statistical characteristics of the 
classes as a whole are preserved (these characteristics do not depend on 
the choice of the representative). 

In mathematical language, the problem sounds like this: find an 
invariant spectral cone which reproduces the spectral properties of all basic 
variables (in all reference frames). This is exactly what the standard antilat- 
tice cone does. So in the ideal case (in particular, when the group G is 
large enough), we should expect the ordered linear space (A, P, e) [P  is 
the cone in A whose dual is ('-~c (CA§ '] to be isomorphic to the standard 
operator quantum description (Ast , As +, es~)q u. More precisely, this refers 
to the subspace of A generated by the basic variables, since neither the 
simplified model nor the standard one describes associative products 
between incompatible variables. For example, in Petrov (1985) the covariant 
description of spin 1/2 is in the space of all 2 x 2 matrices (regarded as 
eight-dimensional real space) and after the factorization we get the standard 
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circular cone in the four-dimensional Hermitian subspace. All commutative 
products of  the spin projections (in all reference frames) lie in the space 
of the anti-Hermitian matrices. 

The conclusion is that the existence of a covariant description does 
not imply that the usual quantum definition is inadequate; it is just incom- 
plete because in the above factorization some of the richer covariant struc- 
ture is irreversibly lost. Notice, however, that this incompleteness has 
nothing to do with the uncertainty relations between the quantum variables, 
as they exist in the covariant model before its factorization. Moreover, we 
see that the appearance of  the uncertainty relations (equivalently: nonsim- 
plicial geometry of the set of states) is closely related to the noninvariance 
of the positive cone in the space of the dynamical variables. 

From our new point of  view the distinction between classical and 
quantum systems is not to be seen in the known (roughly equivalent) 
alternatives commutativity-noncommutativity,  Booleanness-non-Boolean- 
ness, or lattice structure-antilattice structure. All these characteristics remain 
valid, but now they refer to the somewhat simplified standard description 
of the quantum systems. The truly relevant distinction is contained in the 
two possible inclusion relations between the automorphism groups (order 
and Lie automorphisms), the underlying ordered linear spaces being in 
both cases vector lattices. There exists a complete symmetry between 
classical and (covariant) quantum systems. The place of the standard 
invariant (nonlattice) quantum description is at the middle point where the 
two automorphism groups tend to coincide. 

5. A C O M M E N T  ON THE PROBLEM OF QUANTIZATION 

The old problem of  quantization is plagued by the fact that no 
isomorphism can be found between the global structures in (A, A +, e)oj, 
(A, [ . , .  ])d and (Ast, As+, e~t)qu, (Ast, [ ' , "  ]~t)qu. If our hypothesis is correct, 
the whole problem is shifted and we have to deal with (A,A +, e)d, 
(A, [ . , .  ])el and a quantum family (B, ~B +, e)qo, (B, [ . , .  ])qu. Now both 
descriptions are based on vector lattices which may well turn out to be 
isomorphic [(A, A +, e)d ~ (B, B +, e ) q  u ~ (B, qB +, e)qu for any fixed ~] and 
this isomorphism may provide the missing link. 

The passage from the classical to the standard quantum description 
(when possible) will be a two-step procedure. We begin with (A, A +, e)c~ 
and (A, [ . , .  ])ol and first look for a second-class Lie algebra (B, [ . ,  "])qu 
such that (A, A +, e ) ~ - ( B ,  B +, e ) q  u .  If this problem has a solution and 
(B, [ . , . ] )qu  does exist, it cannot be isomorphic to (A, [ . , . ] )~j .  In more 
concrete situations we shall have a specific group G c Aut(B, [ . ,  .])qu as a 
transformation law and therewith we come to a covariant system 
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{(B, ~B +, e)qu ,  r C G} .  It is this family of vector lattices [each one isomor- 
phic to (A, A +, e)cl but (B, [ . , .  ])qu not isomorphic to (A, [ . ,  �9 ])d] that is 
the quantum counterpart of the original classical system. The second step 
is the already mentioned factorization procedure resulting in the standard 
(invariant) model (Ast, A~], est)q u. Clearly, the standard model cannot be 
obtained directly from the classical theory, because there is no longer any 
common (isomorphic) structure [the vector lattice structures in (B, ~B +, e)q  u 

are destroyed by the factorization]. 
Even if the intermediate structure (B, ~B +, e)q  u could not be given an 

independent meaning as a more complete definition of a quantum system, 
it still provides a new possible way of quantization via "deformat ion" of  
the classical theory. 

6. CONCLUSION 

The definitions formulated or just outlined lead to a long-term research 
program aiming at a classification of the invariant geometric dynamical 
systems and their covariant generalizations. 

The abstract invariant definition (D) may or may not enrich our 
conventional understanding of dynamical systems; it is an open problem 
whether there are geometric models essentially different from the standard 
classical and quantum theories. 

The hypothetical covariant quantum geometric definition (a "mirror 
image" of  the classical one) promises much more substantial results; in a 
sense it makes the collection of dynamical systems twice as large as before 
and implies nontrivial changes in the physical status of the quantum systems. 

Both the invariant lattice cones in Lie algebras and the invariant Lie 
products in vector lattices deserve an investigation from a purely mathemati- 
cal point of view as well. They are examples of  objects characterized by 
relations between the automorphism groups of two otherwise independent 
mathematical structures. Such a way of reasoning is often encountered in 
modern mathematics, but so far no definite results are known for the 
particular case when a lattice (or more generally "spectral") order is coupled 
with a Lie algebra structure. The different versions of this combination 
apparently admit immediate physical interpretation as various kinds of 
dynamical systems and this may give an additional stimulus for their 
investigation, especially in the infinite-dimensional case. 
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